

py2jdbc - Python JDBC Interface

py2jdbc is a Python DBI 2.0 interface to JDBC databases.

	Documentation: http://py2jdbc.readthedocs.org/

	Source Code: https://github.com/swstephe/py2jdbc

	Download: https://pypi.python.org/pypi/py2jdbc

	Mailing List: http://groups.google.com/group/python-jdbc

Please feel free to ask questions via the mailing list (python-jdbc@googlegroups.com).

To report installation problems, bugs or any other issues please email
python-jdbc@googlegroups.com or raise an issue on GitHub [https://github.com/swstephe/py2jdbc/issues/news].

For an alphabetic list of all functions in the package,
see the Index.

	Introduction
	Installation

	Dependencies and extensions

	Design goals

	Java Modified UTF-8 Encoding
	Synopsis

	Usage

	API Reference

	JVM Utilities
	Synopsis

	API Reference

	JNI Interface
	Synopsis

	API Reference

	Java Signatures
	Synopsis

	API Reference

	Wrappers
	Synopsis

	API Reference

	Exceptions

	DBI 2.0
	Synopsis

	API Reference

	History

	Changes
	Version 0.0.6

	Version 0.0.5

	Version 0.0.3

	Version 0.0.1

	Contributing

	Acknowledgements

	Related Work

Indices and tables

	Index

	Module Index

	Search Page

Introduction

Installation

This package is available from the Python Package Index [http://pypi.python.org/pypi/py2jdbc]. If you have pip [https://pip.pypa.io/] you should be able to do:

$ pip install petl

You can also download maually, extract and run python setup.py
install.

to verify installation, the test suite can be run with pytest [https://pytest.org/], e.g.:

$ pip install pytest
$ pytest

py2jdbc has been tested with Python version 2.7 and 3.7
under Linux and Windows operating systems.

Dependencies and extensions

This package is written in pure Python. The only requirement is the six [https://pypi.org/project/six/] module, for Python 2 and 3 compatibility.

Design goals

This package is designed to conform to DBI 2.0, with an eye toward working
well with database ORM’s, like SQLAlchemy.

Java Modified UTF-8 Encoding

Synopsis

This module creates a Python codecs [https://docs.python.org/3/library/codecs.html]
interface for the Java
Modified UTF-8 [https://docs.oracle.com/javase/8/docs/api/java/io/DataInput.html] Encoding,
for JNI interface calls. It is slightly different than the UTF-8 encoding.

The differences are:

	The null byte ‘\u0000’ is encoded in 2-bytes rather than 1-byte,
so that the encoded string never has an embedded zero-byte.

	Onle the 1-byte, 2-byte, and 3-byte formats are used.

	Supplementary characters [https://docs.oracle.com/javase/8/docs/api/java/lang/Character.html#unicode]
are represented in the form of surrogate pairs, which take 6-bytes.

This gives us the following mapping:

	Number of bytes

	First code point

	Last code point

	Bits

	Byte 1

	Byte 2

	Byte 3

	Byte 4

	Byte 5

	Byte 6

	2

	U+0000

	U+0000

	–

	11000000

	10000000

	
	
	
	

	1

	U+0001

	U+007F

	7

	0xxxxxxx

	
	
	
	
	

	2

	U+0080

	U+07FF

	11

	110xxxxx

	10xxxxxx

	
	
	
	

	3

	U+0800

	U+FFFF

	16

	1110xxxx

	10xxxxxx

	10xxxxxx

	
	
	

	6

	U+10000

	U+FFFFF

	20

	11101101

	1010xxxx

	10xxxxxx

	11101101

	1011xxxx

	10xxxxxx

To implement as a Python codec, all that is needed is an encode and decode function.
The codec is registered by passing a custom function to search for potentially multiple
codecs and return the two functions in a CodecInfo object.

Sometimes this encoding is referred to as CESU-8 or
Compatibility Encoding Scheme for UTF-16: 8-bit [https://en.wikipedia.org/wiki/CESU-8],
but changes the way zero bytes (‘\x00’) are encoded. There doesn’t seem to be an official
designation for this encoding, and a request to officially added to Python was rejected,
so I’ll just use “mutf8” or “mutf-8” for my implementation.

Usage

To use this encoding, you could do this:

import codecs
import py2jdbc.mutf8
codecs.register(py2jdbc.mutf8.info)

codecs.encode(u'a string', 'mutf8')
codecs.encode(u'a string', 'mutf-8')
codecs.encode(u'a string', py2jdbc.mutf8.NAME)

The JNI Interface module registers and imports this module and maps it to jni.encode()
and jni.decode() already, so you could also use it with:

from py2jdbc.jni import encode

encode(u'a string')
decode(b'a string')

Although JNI will do this automatically for any calls needing a character pointer argument
or returning a character poiter result.

API Reference

JVM Utilities

Synopsis

This module contains some utilities for finding the JVM dynamic
link library, in a mostly portable way, and to figure out a default CLASSPATH
setting.

API Reference

JNI Interface

Synopsis

A pure Python JNI interface using ctypes.
This is mostly a straight-forward mapping of jni.h from C++ to Python’s FFI ctypes.
There is some additional functionality to manage a singleton JVM and an JNIEnv
object for each thread.

It should be functional enough that you could use it in any project needing a pure
Python JNI interface, but may need some work to be more comprehensive.

More detailed documentation of the C side can be found in the JNI Specifications [https://docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/functions.html].

API Reference

Java Signatures

Synopsis

To use the JNI Interface, functions need to be mapped to things like the return
type of functions, or field data type, which come from the method or field
signatures.

For example, a field with signature ‘Z’ should be called with GetBooleanField,
while a static field with that signature should be called with GetBooleanStaticField.

A method with a signature ‘()B’ should be called with ‘CallByteMethod’ and a static
method with the same signature should be called with CallByteStaticMethod`.

To simplify this struture, this module will try to automatically map signatures to
the functions that need to be called. It also tries to convert given Python
values to a similar type.

For example:

For method signatures:

API Reference

Wrappers

Synopsis

This module is a set of of classes which wrap jclass and jobject values, so
they can be accessed approximately the same way as Python classes and objects.

	Each jni.JNIEnv object must be tied to the local thread. So this module
has an object ThreadEnv, which is a thread-specific “singleton”. There is
one instance per thread.

	Each ThreadEnv object contains a list of classes called classes.

	Each value is a Python wrapper for the class which wraps the jclass, mapping
Java methods and fields to the class.

	If a jobject is encountered, it can be wrapped with an Instance of the class,
which is a nested class of the class.

For example:

API Reference

Exceptions

DBI 2.0

Synopsis

The module __init__.py rolls the DBI 2.0 interface from all the prior modules.
From this level, there is no longer and JNI/JVM weirdness details and users
should be able to use this code just like any other DBI module.

API Reference

History

Originally, in my day job, I needed to access a Teradata database. After a lot of difficulty
getting ODBC for Linux to work in Red Hat, I decided to look at integrating the Teradata
JDBC drivers. Previous developers had actually ported everything to Jython, just to
accommodate JDBC drivers.

My first approach was to convert my app to pure Python, then create a small Java
WebSerice API to serve DBI requests. At first, I used Google’s protobuf and ZeroMQ
on both Java and Python sides to send messages back-and-forth.

Later, while teaching myself Hadoop, I found Thrift, which contained a server and a
message protocol built-in, so I ported both sides to use Thrift on both sides.

Still later, I came across pyjnius, which is a Cython interface to JNI, with class
autoloading introspection of classes and methods. However, it was painful to build
pyjnius in our Windows environment, and it had some incompatibility problems with Python 3.

Finally I decided to write my own Pure Python interface to JNI, (using built-in ctypes),
then wrap enough classes to get a Python interface to JDBC calls that approached DBI 2.0
compliance.

I hope to provide this as a connector, like pyodbc, to SQLAlchemy and other database
frameworks.

As an expierment for my own education, I hope to create alternative branches where
this package is ported back to Cython and even raw C++ on different branches, as well
as trying out Python package distribution.

Changes

Version 0.0.6

Put search to use PY2JDBC_JAVA_HOME, JAVA_HOME, JDK_HOME before trying to load
library in path.

Version 0.0.5

Hide signals from Windows platform, fixes for Python 2.7, (mostly MUTF8).

Version 0.0.3

Unit tests against Derby database.

Version 0.0.1

This is the initial release of py2jdbc.

Contributing

Acknowledgements

This is community-maintained software. The following people have contributed to
the development of this package:

	Scott Stephens (swstephe [https://github.com/swstephe])

Development of py2jdbc used a professional version of
PyCharm [https://www.jetbrains.com/pycharm/].

Related Work

 Python Module Index

 p

 		 	

 		
 p	

 	
 	
 py2jdbc	

Index

 P

P

 	
 	py2jdbc (module)

 _static/ajax-loader.gif

_static/comment-bright.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 py2jdbc - Python JDBC Interface

 		
 Introduction

 		
 Installation

 		
 Dependencies and extensions

 		
 Design goals

 		
 Java Modified UTF-8 Encoding

 		
 Synopsis

 		
 Usage

 		
 API Reference

 		
 JVM Utilities

 		
 Synopsis

 		
 API Reference

 		
 JNI Interface

 		
 Synopsis

 		
 API Reference

 		
 Java Signatures

 		
 Synopsis

 		
 API Reference

 		
 Wrappers

 		
 Synopsis

 		
 API Reference

 		
 Exceptions

 		
 DBI 2.0

 		
 Synopsis

 		
 API Reference

 		
 History

 		
 Changes

 		
 Version 0.0.6

 		
 Version 0.0.5

 		
 Version 0.0.3

 		
 Version 0.0.1

 		
 Contributing

 		
 Acknowledgements

 		
 Related Work

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

